Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Chem Biomed Imaging ; 2(3): 222-232, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38551011

RESUMEN

The Dual Imaging and Diffraction (DIAD) beamline at Diamond Light Source (Didcot, U.K.) implements a correlative approach to the dynamic study of materials based on concurrent analysis of identical sample locations using complementary X-ray modalities to reveal structural detail at various length scales. Namely, the underlying beamline principle and its practical implementation allow the collocation of chosen regions within the sample and their interrogation using real-space imaging (radiography and tomography) and reciprocal space scattering (diffraction). The switching between the two principal modes is made smooth and rapid by design, so that the data collected is interlaced to obtain near-simultaneous multimodal characterization. Different specific photon energies are used for each mode, and the interlacing of acquisition steps allows conducting static and dynamic experiments. Building on the demonstrated realization of this state-of-the-art approach requires further refining of the experimental practice, namely, the methods for gauge volume collocation under different modes of beam-sample interaction. To address this challenge, experiments were conducted at DIAD devoted to the study of human dental enamel, a hierarchical structure composed of hydroxyapatite mineral nanocrystals, as a static sample previously affected by dental caries (tooth decay) as well as under dynamic conditions simulating the process of acid demineralization. Collocation and correlation were achieved between WAXS (wide-angle X-ray scattering), 2D (radiographic), and 3D (tomographic) imaging. While X-ray imaging in 2D or 3D modes reveals real-space details of the sample microstructure, X-ray scattering data for each gauge volume provided statistical nanoscale and ultrastructural polycrystal reciprocal-space information such as phase and preferred orientation (texture). Careful registration of the gauge volume positions recorded during the scans allowed direct covisualization of the data from two modalities. Diffraction gauge volumes were identified and visualized within the tomographic data sets, revealing the underlying local information to support the interpretation of the diffraction patterns. The present implementation of the 4D microscopy paradigm allowed following the progression of demineralization and its correlation with time-dependent WAXS pattern evolution in an approach that is transferable to other material systems.

2.
Sci Rep ; 14(1): 7427, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548872

RESUMEN

Alzheimer's disease (AD), a chronic neurodegenerative disorder, is the leading cause of dementia. Over-activated microglia is related to amyloid-beta (Aß) and phosphorylated tau (phospho-tau) accumulation in the AD brain. Taurine is an amino acid with multiple physiological functions including anti-inflammatory effects, and has been reported to be neuroprotective in AD. However, the role of taurine in microglia-mediated AD remains unclear. Here, we examined the effects of taurine on the brains of senescence-accelerated mouse prone 8 (SAMP8) mice by comparing those administered 1% taurine water with those administered distilled water (DW). We observed increased levels of taurine and taurine transporter (TAUT) in the brains of the taurine-treated mice compared with those of control mice. Immunohistochemical and Western blot analyses revealed that taurine significantly reduced the number of activated microglia, levels of phospho-tau and Aß deposit in the hippocampus and cortex. Triggering receptors expressed on myeloid cells-2 (TREM2) are known to protect against AD pathogenesis. Taurine upregulated TREM2 expression in the hippocampus and cortex. In conclusion, the present study suggests that taurine treatment may upregulate TREM2 to protect against microglia over-activation by decreasing the accumulation of phospho-tau and Aß; providing an insight into a novel preventive strategy in AD.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Ratones , Animales , Microglía/metabolismo , Taurina/farmacología , Taurina/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Agua/metabolismo , Modelos Animales de Enfermedad
3.
Transp Porous Media ; 150(1): 71-88, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37663951

RESUMEN

Transport in porous media plays an essential role for many physical, engineering, biological and environmental processes. Novel synchrotron imaging techniques and image-based models have enabled more robust quantification of geometric structures that influence transport through the pore space. However, image-based modelling is computationally expensive, and end users often require, while conducting imaging campaign, fast and agile bulk-scale effective parameter estimates that account for the pore-scale details. In this manuscript we enhance a pre-existing image-based model solver known as OpenImpala to estimate bulk-scale effective transport parameters. In particular, the boundary conditions and equations in OpenImpala were modified in order to estimate the effective diffusivity in an imaged system/geometry via a formal multi-scale homogenisation expansion. Estimates of effective pore space diffusivity were generated for a range of elementary volume sizes to estimate when the effective diffusivity values begin to converge to a single value. Results from OpenImpala were validated against a commercial finite element method package COMSOL Multiphysics (abbreviated as COMSOL). Results showed that the effective diffusivity values determined with OpenImpala were similar to those estimated by COMSOL. Tests on larger domains comparing a full image-based model to a homogenised (geometrically uniform) domain that used the effective diffusivity parameters showed differences below 2 % error, thus verifying the accuracy of the effective diffusivity estimates. Finally, we compared OpenImpala's parallel computing speeds to COMSOL. OpenImpala consistently ran simulations within fractions of minutes, which was two orders of magnitude faster than COMSOL providing identical supercomputing specifications. In conclusion, we demonstrated OpenImpala's utility as part of an on-site tomography processing pipeline allowing for fast and agile assessment of porous media processes and to guide imaging campaigns while they are happening at synchrotron beamlines. Supplementary Information: The online version contains supplementary material available at 10.1007/s11242-023-01993-7.

4.
Neurotrauma Rep ; 4(1): 598-604, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731648

RESUMEN

The study aims to explore the demographic and clinical characteristics of persons with spinal cord injury (SCI) in Bangladesh. A total of 3035 persons with SCI spanning from 2018 to 2022 were included in this cross-sectional study. Information about demographic and clinical variables was obtained from the medical records and verified through telephone calls to ensure accuracy and consistency. Approximately half (48.30%) of the study participants were located in Dhaka Division. The average age of persons with SCI was 38.3 years, with a standard deviation of 15.9 years, and the largest proportion (33.4%) fell within the age range of 18-30 years. Males outnumbered females by nearly 2.5 times. In the study, 59.6% had suffered traumatic injuries, whereas 40.4% had SCI attributable to disease-related causes; 58.1% were diagnosed with tetraplegia and 40.1% with paraplegia. Fall from height (42.1%) and road traffic trauma (27%) were the most common causes of traumatic injuries. Degenerative myelopathy (41.1%) was the most frequent cause of non-traumatic SCI, followed by tumors (27.7%) and tuberculosis (TB; 14.8%). Both traumatic (58.3%) and degenerative (56.7%) causes of SCI commonly affected the cervical spine, whereas TB (24.4%) and tumors (47.5%) had a higher incidence of affecting the dorsal spine. In the absence of a registry or national database for patients with SCI in Bangladesh, this study would serve as representative data for future studies.

5.
Nat Commun ; 14(1): 5576, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696888

RESUMEN

Exosomal PD-L1 (exoPD-L1) has recently received significant attention as a biomarker predicting immunotherapeutic responses involving the PD1/PD-L1 pathway. However, current technologies for exosomal analysis rely primarily on bulk measurements that do not consider the heterogeneity found within exosomal subpopulations. Here, we present a nanoscale cytometry platform NanoEPIC, enabling phenotypic sorting and exoPD-L1 profiling from blood plasma. We highlight the efficacy of NanoEPIC in monitoring anti-PD-1 immunotherapy through the interrogation of exoPD-L1. NanoEPIC generates signature exoPD-L1 patterns in responders and non-responders. In mice treated with PD1-targeted immunotherapy, exoPD-L1 is correlated with tumor growth, PD-L1 burden in tumors, and the immune suppression of CD8+ tumor-infiltrating lymphocytes. Small extracellular vesicles (sEVs) with different PD-L1 expression levels display distinctive inhibitory effects on CD8 + T cells. NanoEPIC offers robust, high-throughput profiling of exosomal markers, enabling sEV subpopulation analysis. This platform holds the potential for enhanced cancer screening, personalized treatment, and therapeutic response monitoring.


Asunto(s)
Antígeno B7-H1 , Vesículas Extracelulares , Animales , Ratones , Antígeno B7-H1/genética , Linfocitos T CD8-positivos , Movimiento Celular , Terapia de Inmunosupresión
6.
PLoS One ; 18(8): e0285954, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37643156

RESUMEN

Foliar fertilization is a reliable technique for correcting a nutrient deficiency in plants caused by inadequate nutrient supply to the roots in acid soil. Soluble nutrients in banana pseudostem sap might be effective to supplement chemical fertilizers. However, the limited nutrients in sole banana pseudostem sap as foliar fertilization may not meet-up the nutritional demand of the crop. Field trials were, therefore, conducted with the combination of soil-applied fertilizers with foliar spray of banana pseudostem sap to increase nutrient uptake, yield, and quality of sweet corn planted in acidic soil. Three treatments viz., 100% recommended dose of fertilizers (RD) as control (T1), 75% of RD applied in soil with foliar application of non-enriched banana pseudostem sap (T2), and 50% RD applied in soil with foliar spray of enriched banana pseudostem sap (T3) were replicated four times. The combination of soil-applied fertilizer with foliar spray of enriched banana pseudostem sap (T3) showed a significant increase in leaf area index (11.3%), photosynthesis (12%), fresh cob yield (39%), and biomass of corn (29%) over control. Besides, the 50% RD of soil fertilization with foliar spray of enriched pseudostem sap increased nutrient uptake in addition to an increase in sugar content, phenolic content, soluble protein, and amino acids of corn. Considering the economic analysis, the highest net income, BCR (3.74) and MBCR (1.25) values confirmed the economic viability of T3 treatment over the T1. The results suggest that foliar spray of enriched banana pseudostem sap can be used as a supplementary source of nutrients to enhance nutrient uptake by corn while increasing yield and minimizing chemical fertilizer use in acid soil.


Asunto(s)
Fertilizantes , Musa , Zea mays , Verduras , Nutrientes
7.
Nat Biomed Eng ; 7(9): 1188-1203, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37037966

RESUMEN

The clinical use of tumour-infiltrating lymphocytes for the treatment of solid tumours is hindered by the need to obtain large and fresh tumour fractions, which is often not feasible in patients with unresectable tumours or recurrent metastases. Here we show that circulating tumour-reactive lymphocytes (cTRLs) can be isolated from peripheral blood at high yield and purity via microfluidic immunomagnetic cell sorting, allowing for comprehensive downstream analyses of these rare cells. We observed that CD103 is strongly expressed by the isolated cTRLs, and that in mice with subcutaneous tumours, tumour-infiltrating lymphocytes isolated from the tumours and rapidly expanded CD8+CD103+ cTRLs isolated from blood are comparably potent and respond similarly to immune checkpoint blockade. We also show that CD8+CD103+ cTRLs isolated from the peripheral blood of patients and co-cultured with tumour cells dissociated from their resected tumours resulted in the enrichment of interferon-γ-secreting cell populations with T-cell-receptor clonotypes substantially overlapping those of the patients' tumour-infiltrating lymphocytes. Therapeutically potent cTRLs isolated from peripheral blood may advance the clinical development of adoptive cell therapies.


Asunto(s)
Microfluídica , Neoplasias , Animales , Ratones , Linfocitos T CD8-positivos , Neoplasias/terapia , Linfocitos Infiltrantes de Tumor , Interferón gamma
8.
Nano Lett ; 23(13): 5877-5885, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37040490

RESUMEN

Nanoneedles are a useful tool for delivering exogenous biomolecules to cells. Although therapeutic applications have been explored, the mechanism regarding how cells interact with nanoneedles remains poorly studied. Here, we present a new approach for the generation of nanoneedles, validated their usefulness in cargo delivery, and studied the underlying genetic modulators during delivery. We fabricated arrays of nanoneedles based on electrodeposition and quantified its efficacy of delivery using fluorescently labeled proteins and siRNAs. Notably, we revealed that our nanoneedles caused the disruption of cell membranes, enhanced the expression of cell-cell junction proteins, and downregulated the expression of transcriptional factors of NFκB pathways. This perturbation trapped most of the cells in G2 phase, in which the cells have the highest endocytosis activities. Taken together, this system provides a new model for the study of interactions between cells and high-aspect-ratio materials.


Asunto(s)
Endocitosis , Proteínas , Membrana Celular
9.
Heliyon ; 9(4): e14942, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37025871

RESUMEN

A key and ecologically sound strategy for integrated weed management is the use of varieties of weed-competitive crops. Utilizing wheat cultivars that are weed-competitive can lessen weed pressure and inordinate herbicide usage in wheat fields by a substantial amount. To assess the weed suppressibility of Bangladeshi wheat varieties, a field test was carried out in 2018 throughout the winter season at the Agronomy Field Laboratory, Bangladesh Agricultural University, Bangladesh. Tests on a total of 18 selected Bangladeshi wheat cultivars were conducted in both "weedy" and "weed-free" environments. Additionally, weed monoculture plots (without wheat) were kept. The experiment was replicated three times using a randomized complete block design (RCBD). The results demonstrated that wheat varieties' weed interference and production capabilities differed greatly. BARI Gom 22 permitted the most weed growth (35 m-2), whereas BARI Gom 23 allowed the least (15 m-2) at 60 DAS among the wheat types under study. Grain yield ranged between 4.42 t ha-1 (BARI Gom 20) and 5.45 t ha-1 (BARI Gom 26) in weed-free settings, whereas it fluctuated from 2.48 t ha-1 (BARI Gom 21) to 3.93 t ha-1(BARI Gom 33) in weedy condition. The extent of the relative yield loss brought on by weeds ranged from 24 to 53%, with BARI Gom 33 suffering the least and Binagom-1 suffering the most. The weed competitive index varied from 0.48 to 1.47 for the examined wheat types. Among the cultivars, Binagom-1 had the lowest WCI and BARI Gom 29 had the highest. Although BARI Gom 33 was the best yielder in weedy condition and had the lowest relative yield loss, its interference against weed was moderate. Relative to the other varieties under consideration, comparatively BARI Gom 33 was the best in terms of yield and weed interference, but it is also advocated that breeders should continually focus on developing a variety that has both excellent producing potential and robust weed suppression.

10.
Nutrients ; 15(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37111122

RESUMEN

Hsp70.1 has a dual function as a chaperone protein and lysosomal stabilizer. In 2009, we reported that calpain-mediated cleavage of carbonylated Hsp70.1 causes neuronal death by inducing lysosomal rupture in the hippocampal CA1 neurons of monkeys after transient brain ischemia. Recently, we also reported that consecutive injections of the vegetable oil-peroxidation product 'hydroxynonenal' induce hepatocyte death via a similar cascade in monkeys. As Hsp70.1 is also related to fatty acid ß-oxidation in the liver, its deficiency causes fat accumulation. The genetic deletion of betaine-homocysteine S-methyltransferase (BHMT) was reported to perturb choline metabolism, inducing a decrease in phosphatidylcholine and resulting in hepatic steatosis. Here, focusing on Hsp70.1 and BHMT disorders, we studied the mechanisms of hepatocyte degeneration and steatosis. Monkey liver tissues with and without hydroxynonenal injections were compared using proteomics, immunoblotting, immunohistochemical, and electron microscopy-based analyses. Western blotting showed that neither Hsp70.1 nor BHMT were upregulated, but an increased cleavage was observed in both. Proteomics showed a marked downregulation of Hsp70.1, albeit a two-fold increase in the carbonylated BHMT. Hsp70.1 carbonylation was negligible, in contrast to the ischemic hippocampus, which was associated with ~10-fold increments. Although histologically, the control liver showed very little lipid deposition, numerous tiny lipid droplets were seen within and around the degenerating/dying hepatocytes in monkeys after the hydroxynonenal injections. Electron microscopy showed permeabilization/rupture of lysosomal membranes, dissolution of the mitochondria and rough ER membranes, and proliferation of abnormal peroxisomes. It is probable that the disruption of the rough ER caused impaired synthesis of the Hsp70.1 and BHMT proteins, while impairment of the mitochondria and peroxisomes contributed to the sustained generation of reactive oxygen species. In addition, hydroxynonenal-induced disorders facilitated degeneration and steatosis in the hepatocytes.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa , Hígado Graso , Animales , Betaína-Homocisteína S-Metiltransferasa/metabolismo , Haplorrinos/metabolismo , Muerte Celular , Hepatocitos/metabolismo , Isquemia , Hígado/metabolismo
11.
J Infect Dis ; 227(9): 1068-1072, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36461940

RESUMEN

Molnupiravir is an antiviral agent recently used for treating coronavirus disease 2019 (COVID-19). Here, we demonstrate that N4-hydroxycytidine (NHC), a molnupiravir metabolite, treated with cytidine deaminase (CDA) induced Cu(II)-mediated oxidative DNA damage in isolated DNA. A colorimetric assay revealed hydroxylamine generation from CDA-treated NHC. The site specificity of DNA damage also suggested involvement of hydroxylamine in the damage. Furthermore, Cu(I) and H2O2 play an important role in the DNA damage. We propose oxidative DNA damage via CDA-mediated metabolism as a possible mutagenic mechanism of NHC, highlighting the need for careful risk assessment of molnupiravir use in therapies for viral diseases, including COVID-19.


Asunto(s)
Antivirales , COVID-19 , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , SARS-CoV-2 , Peróxido de Hidrógeno , Hidroxilaminas/farmacología , Estrés Oxidativo , Daño del ADN
12.
Sci Adv ; 8(35): eabo7792, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36054348

RESUMEN

Circulating tumor cells (CTCs) break free from primary tumors and travel through the circulation system to seed metastatic tumors, which are the major cause of death from cancer. The identification of the major genetic factors that enhance production and persistence of CTCs in the bloodstream at a whole genome level would enable more comprehensive molecular mechanisms of metastasis to be elucidated and the identification of novel therapeutic targets, but this remains a challenging task due to the heterogeneity and extreme rarity of CTCs. Here, we describe an in vivo genome-wide CRISPR knockout screen using CTCs directly isolated from a mouse xenograft. This screen elucidated SLIT2-a gene encoding a secreted protein acting as a cellular migration cue-as the most significantly represented gene knockout in the CTC population. SLIT2 knockout cells are highly metastatic with hypermigratory and mesenchymal phenotype, resulting in enhanced cancer progression in xenograft models.


Asunto(s)
Células Neoplásicas Circulantes , Animales , Transición Epitelial-Mesenquimal , Xenoinjertos , Humanos , Ratones , Metástasis de la Neoplasia/patología , Células Neoplásicas Circulantes/patología
13.
Cell Mol Biol (Noisy-le-grand) ; 68(5): 7-15, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36029489

RESUMEN

Vitamin D insufficiency is common in patients suffering from end-stage renal disease (ESRD). In contrast, vitamin D supplementation could improve the status of ESRD patients (ESRDP). However, this effect's molecular mechanism is not fully understood. Therefore, this study aimed to assess vitamin D supplementation's impact on inflammation and oxidative signaling pathways in ESRDP. 104 ESRDP were divided into placebo (53) and vitamin D (51) groups. They were also categorized into four subgroups based on the severity of vitamin D deficiency. The dose of vitamin D3 (0.25-0.5mg/day) supplementation was determined based on plasma levels of calcium and parathyroid hormone (PTH). Vitamin D supplementation was performed for eight weeks. Serum levels of calcium, phosphorus, PTH, albumin, creatinine, ALP, and glomerular filtration along with antioxidant enzymes, malondialdehyde, and pro-inflammatory factors were measured. Moreover, the Nrf2 and NF-ĸB expression was evaluated in whole blood. According to the results, vitamin D supplementation improved the status of patients with ESRD significantly as compared with the placebo group (p<0.05). In addition, the expression of NF-ĸB and the serum levels of pro-inflammatory factors and malondialdehyde were significantly reduced. Finally, the expression of Nrf-2 and the serum of antioxidant enzymes were raised in the vitamin D group as compared with the placebo group (p<0.05). Vitamin D reduces clinical and metabolic symptoms in ESRDP by modulating gene expression (in oxidative stress and inflammation).


Asunto(s)
Fallo Renal Crónico , Deficiencia de Vitamina D , Antioxidantes , Biomarcadores , Calcio , Colecalciferol , Suplementos Dietéticos , Humanos , Inflamación , Malondialdehído , FN-kappa B , Estrés Oxidativo , Hormona Paratiroidea , Vitamina D , Vitaminas
14.
Micromachines (Basel) ; 13(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36014136

RESUMEN

This paper presents a wideband and high-gain rectangular microstrip array antenna with a new frequency-selective surface (FSS) designed as a reflector for the sub-6 5G applications. The proposed antenna is designed to meet the US Federal Communications Commission (FCC) standard for 5G in the mid-band (3.5-5 GHz) applications. The designed antenna configuration consists of 1 × 4 rectangular microstrip array antenna with an FSS reflector to produce a semi-stable high radiation gain. The modeled FSS delivered a wide stopband transmission coefficient from 3.3 to 5.6 GHz and promised a linearly declining phase over the mid-band frequencies. An equivalent circuit (EC) model is additionally performed to verify the transmission coefficient of the proposed FSS structure for wideband signal propagation. A low-cost FR-4 substrate material was used to fabricate the antenna prototype. The proposed wideband array antenna with an FSS reflector attained a bandwidth of 2.3 GHz within the operating frequency range of 3.5-5.8 GHz, with a fractional bandwidth of 51.12%. A high gain of 12.4 dBi was obtained at 4.1 GHz with an improvement of 4.4 dBi compared to the antenna alone. The gain variation was only 1.0 dBi during the entire mid-band. The total dimension of the fabricated antenna prototype is 10.32 λo × 4.25 λo ×1.295 λo at a resonance frequency of 4.5 GHz. These results make the presented antenna appropriate for 5G sub-6 GHz applications.

15.
J Synchrotron Radiat ; 29(Pt 4): 1004-1013, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787567

RESUMEN

The DIAD beamline for Dual Imaging and Diffraction at Diamond Light Source has opted to use an industrial robot to position its Dectris Pilatus 2M CdTe diffraction detector. This setup was chosen to enable flexible positioning of the detector in a quarter-sphere around the sample position whilst reliably holding the large weight of 139 kg of detector, detector mount and cabling in a stable position. Metrology measurements showed that the detector can be positioned with a linear repeatability of <19.7 µm and a rotational repeatability of <16.3 µrad. The detector position stays stable for a 12 h period with <10.1 µm of movement for linear displacement and <3.8 µrad for rotational displacement. X-ray diffraction from calibration samples confirmed that the robot is sufficiently stable to resolve lattice d-spacings within the instrumental broadening given by detector position and beam divergence.

16.
Cureus ; 14(6): e26010, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35859968

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has numerous effects on different systemic organs other than the lungs. In this case report, we look at the presentation of a young female who was diagnosed with autoimmune hemolytic anemia (AIHA), kidney injury and thrombocytopenia during coronavirus disease 2019 (COVID-19) infection. She recovered well without the need for steroids. As demonstrated by this case, COVID-19 infection can be associated with the development of AIHA. The purpose of this report is to indicate that COVID-19 can present unusually with different clinical manifestations enough to require hospitalization.

18.
Plants (Basel) ; 11(9)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35567151

RESUMEN

Soil salinity is a major constraint to rice production in coastal areas around the globe, and modern high-yielding rice cultivars are more sensitive to high salt stress, which limits rice productivity. Traditional breeding programs find it challenging to develop stable salt-tolerant rice cultivars with other stress-tolerant for the saline environment in Bangladesh due to large yield variations caused by excessive salinity fluctuations during the dry (boro) season. We examined trait characterization of 18 advanced breeding lines using SNP genotyping and among them, we found line G6 (BR9621-B-1-2-11) (single breeding line with multiple-stress-tolerant QTL/genes) possessed 9 useful QTLs/genes, and two lines (G4:BR9620-2-7-1-1 and G14: IR 103854-8-3-AJY1) carried 7 QTLs/genes that control the desirable traits. To evaluate yield efficiency and stability of 18 rice breeding lines, two years of field experiment data were analyzed using AMMI (additive main effect and multiplicative interaction) and GGE (Genotype, Genotype Environment) biplot analysis. The AMMI analysis of variance demonstrated significant genotype, environment, and their interaction, accounting for 14.48%, 62.38%, and 19.70% of the total variation, respectively, and revealed that among the genotypes G1, G13, G14, G17, and G18 were shown to some extent promising. Genotype G13 (IR 104002-CMU 28-CMU 1-CMU 3) was the most stable yield based on the AMMI stability value. The GGE biplot analysis indicates 76% of the total variation (PC1 48.5% and PC2 27.5%) which is performed for revealing genotype × environment interactions. In the GGE biplot analysis, genotypes were checked thoroughly in two mega-environments (ME). Genotype G14 (IR103854-8-3-AJY1) was the winning genotype in ME I, whereas G1 (BR9627-1-3-1-10) in ME II. Because of the salinity and stability factors, as well as the highest averages of grain yield, the GGE and AMMI biplot model can explain that G1 and G13 are the best genotypes. These (G1, G6, G13, G14, G17, and G18) improved multiple-stress-tolerant breeding lines with stable grain yield could be included in the variety release system in Bangladesh and be used as elite donor parents for the future breeding program as well as for commercial purposes with sustainable production.

19.
J Imaging ; 8(5)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35621899

RESUMEN

X-ray computed tomography (XCT) is regularly employed in geomechanics to non-destructively measure the solid and pore fractions of soil and rock from reconstructed 3D images. With the increasing availability of high-resolution XCT imaging systems, researchers now seek to measure microfabric parameters such as the number and area of interparticle contacts, which can then be used to inform soil behaviour modelling techniques. However, recent research has evidenced that conventional image processing methods consistently overestimate the number and area of interparticle contacts, mainly due to acquisition-driven image artefacts. The present study seeks to address this issue by systematically assessing the role of XCT acquisition parameters in the accurate detection of interparticle contacts. To this end, synchrotron XCT has been applied to a hexagonal close-packed arrangement of glass pellets with and without a prescribed separation between lattice layers. Different values for the number of projections, exposure time, and rotation range have been evaluated. Conventional global grey value thresholding and novel U-Net segmentation methods have been assessed, followed by local refinements at the presumptive contacts, as per recently proposed contact detection routines. The effect of the different acquisition set-ups and segmentation techniques on contact detection performance is presented and discussed, and optimised workflows are proposed.

20.
Nano Lett ; 22(12): 4774-4783, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35639489

RESUMEN

Magnetic cell sorting is an enabling tool for the isolation of specific cellular subpopulations for downstream applications and requires the cells to be labeled by a sufficient number of magnetic nanoparticles to leverage magnetophoresis for efficient separation. This requirement makes it challenging to target weakly expressed biomarkers. Here, we developed a new approach that selectively and efficiently amplifies the magnetic labeling on cells through sequentially connected antibodies and nanoparticles delivered to the surface or interior of the cell. Using this approach, we achieved amplification up to 100-fold for surface and intracellular markers. We also demonstrated the utility of this assay for enabling high-performance magnetic cell sorting when it is applied to the analysis of rare tumor cells for cancer diagnosis and the purification of transfected CAR T cells for immunotherapy. The data presented demonstrate a useful tool for the stratification of rare cell subpopulations.


Asunto(s)
Magnetismo , Nanopartículas , Separación Celular , Fenómenos Magnéticos , Fenómenos Físicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...